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Abstract

We look at The Resistance, a Mafia-like hidden information game, under the lens of mechanism design. By modeling the choice of
mechanism as a subgame with a restricted strategy set, we create a solution which provides a strategy for any state of the original game.
Furthermore, we prove that cooperation between the “good” players (Resistance) in the form of this self-imposed mechanism is enforceable
without the need of an overseer and maximizes Resistance chance of victory. To calculate the optimal mechanism and thus the optimal
strategy, we implement the method of counterfactual regret minimization (CFR) to give an ε-approximate Nash equilibrium for the full
game.

I. Introduction

Games involving hidden information are popular for
both competitive and casual play. In hidden infor-
mation games, the behavior of the other players

becomes as important to gameplay as the current state of
the game. Interesting behaviors like bluffing and lying
emerge, along with the necessity of “reading” an opponent
to determine if they are bluffing. Unsurprisingly, imperfect
information games are typically far more difficult to analyze
than perfect information games. This is due to the sheer
number of states and corresponding strategies. To solve
reasonably simple two-person games with hidden informa-
tion is cutting-edge. A recent result in this field was the
solving of Heads-up Limit Hold’em Poker, a limited version
of the popular poker games Texas Hold’em[2]. Notably, this
result is only for the two-player version of the game, as the
complexity quickly spirals out of control as more players
are added. Solving any larger game usually involves taking
advantage of symmetry and creating simplified "approxi-
mate" versions of the game [3].

The Resistance is a Mafia-like party game which is very
popular among board game enthusiasts, with over 100,000
copies sold [1]. Mafia is a well-studied game with strong
results concerning the optimal size of the Mafia[6]. How-
ever, because players are not eliminated on each turn, the
recursive analysis done on Mafia does not work on The Re-
sistance. Furthermore, The Resistance is an enormous game.
The size of a game is often measured in number of distinct
information sets. An information set is the set of all infor-
mation which one player knows. For instance, in a game

of Texas Hold’em, a player’s information set would include
the cards in their hand, the cards on the table, and every bet-
ting action which any player had taken. The largest game
solved to date has around 1013 distinct information sets[2]
and took over 900 core-years of computation. The Resistance
has 7× 1063 information sets1. Therefore, even the new
methods utilized for solving Texas Hold’em problems are
nowhere near sufficient for The Resistance. We instead look
to exploit the rules of the game to propose a mechanism
which all players are motivated to follow.

In Section II, we describe the mechanics of The Resistance
for those unfamiliar with the game. In Section III, we de-
scribe how to view the game as a mechanism and how to
find the best mechanism for the game. Section IV describes
why the mechanism is optimal for the Resistance and is thus
self-imposing. Section V describes the practical result of our
paper, the use of linear programming and the method of
counterfactual regrets used to find a ε−approximate Nash
equilibrium to the mechanism. Section VI discusses the re-
sults of these computational methods as well as how we’ve
visualized and published these results. Finally, Section VII
discusses the specifics of the mechanism computed as well
as future work on imperfect games.

II. Resistance Mechanics

In order to understand the mechanism, it is important
to understand the basic rules of The Resistance. The Reistance
can be played with 5 or more players, but for the purposes
of this paper we will consider only the 5 player version. The
game begins with 2 players being randomly chosen to be

1Before symmetries are taken into account. We will discuss symmetries more later - they let us cut the number of information sets substantially.
However, their utility is fairly limited for the full game, and after symmetries the number of distinct information sets would still be nowhere near feasible.
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Spies. Imperfect information arises here as each Spy knows
the identity of the other Spy, but the 3 other players (the
Resistance) are clueless to the roles of anyone. The Spies
and the Resistance form the two teams for the game.

The Resistance is a five-round game. On each round, the
current player proposes a "mission", which is a fixed size 2

subset of the players. Every player then publicly votes on
whether to accept or reject the mission. If the majority of
players vote to reject the mission, the next player proposes
a mission 3. If the majority of players vote to accept the
mission, then the mission is executed: every player on the
mission privately votes either Pass or Fail. The mission
passes (the Resistance wins the round) if the votes are
unanimous Pass, and fails (the Spies win the round) if there
is at least one Fail vote. Note that all players do see the
result of each mission (how many passes/fails), but votes
are anonymous. At this point, the next round begins.

The game is decided on the result of the missions. If the
game reaches 3 passed missions, the Resistance wins. If the
game reaches 3 failed missions, the Spies win. Therefore,
the Spies have a desire to fail missions when they can (since
that is their only path to victory), but occasionally choosing
to pass a mission can confuse the Resistance about the true
locations of the Spies. The members on the Resistance, on
the other hand, always pass the missions.

P2 (Spy)

P3 (Spy)
P4

P5
P1

Figure 1: Example Resistance layout

We will quickly go through an example round. Imag-
ine that the game has just begun. P1 is the first person to
propose a mission, and he proposes the mission of {P1, P5}.
Now every person at the table publicly votes on whether
to accept or reject the mission. Imagine that the votes are
{A, R, R, R, A} for players 1 through 5, respectively. Since
the majority voted to reject, the next player on the table, P2,
proposes a mission. P2 proposes the mission of {P1, P2} and
the votes are {A, A, A, R, R}. Since the mission was accepted

with a majority, each of P1 and P2 (the two players on the
mission) privately decide whether to pass or fail the mission.
P1 is Resistance and thus will always pass; however, P2 is a
Spy and decides to fail the mission. All players then learn
that the mission has failed, and P3 begins the next round
by proposing a mission.

As noted earlier, all players can see the number of Pass

and Fail votes on a mission. If both spies ever voted to
fail a mission, the resistance members could determine
that anyone not on the mission must be in the Resistance,
which would be disastrous for the spies. In our analysis,
we assume that this never happens: if both spies are on
the mission and they intend to fail it, they will ensure that
only one of them votes Fail

4. Since for the spies, playing
Fail votes is dominated by playing a single Fail vote, this
assumption does not affect the strategies we compute.

III. Mechanism Design

1. Proposed Mechanism

The Resistance lends itself well to a collaborative solution.
Since there are more Resistance members than there are
Spies, any mechanism can be self-enforcing if it is beneficial
for the Resistance. We will show this rigorously later; how-
ever, it is enough to note that, even if all Spies deviate from
the mechanism, they do not impact the chosen mission.

We propose the following framework for a mechanism:
each round, a publicly visible and tamper-proof random
number generator is used to select a mission M from a
mixed strategy SQ based on our current public state Q.
Everyone votes to accept the mission and so Spies choose
to either pass or fail the mission (if there is a Spy on the
mission - otherwise, the mission passes by default). Based
on the outcome of M, the next round the mission would be
selected from a new mixed strategy corresponding to the
new public state. Each of these mixed strategies could be
completely distinct and must be computed separately.

2. Mechanism as Game

This mechanism creates a new 2-player game out of the
original game. The players of this game are the Resistance

2Depending on the mission. On the first round, 2 players are in the mission. On the second round, 3 players are in the mission. On the third round, 2
players are in the mission. On the fourth and fifth rounds, 3 players are in the mission.

3For each round, if there are four rejections, the fifth proposed mission is accepted without voting.
4One way to accomplish this is for players to pre-arrange a priority order for voting to fail; for example, whomever’s name comes first alphabetically.
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and the Spies. Each strategy for each side represents a com-
plete plan for every possible state of the game. For instance,
here is an illustration of a few levels of a Resistance strategy

A

B

BB

pass f ail

A

BA

pass f ail

pass f ail

Figure 2: Resistance pure strategy

This corresponds to a strategy where the only pos-
sible missions to propose are A and B, where the first
proposition is always mission A. This snippet of a strategy
is for only two rounds. The actual decisions here are the
mission (whether to propose A or B at any given node).
For instance, if the Spies response to mission A was to fail,
this pure strategy would propose mission B. A spy strategy
would look similar, but must take into account the location
of the spies.

1

p

pf

A B

f

ff

A B

A B

Figure 3: Spy pure strategy

where here, 1 corresponds to a specific location of Spies.
Any Spy pure strategy has a best response for any configu-
ration of Spies. We will discuss symmetries when we solve
the mechanism, but for now, this is a simple representation
which completely captures the possible behaviors of both
Spies and Resistance. Evaluating the result of two pure
strategies playing each other can be done easily by follow-
ing the tree for each initial configuration of spies and seeing
how many of the resulting games are won by the Resistance.
For utilities, we represent this game as a zero-sum game,
where the utility of the Resistance is the probability that
they win and the utility of the Spies is the negative of that
probability.

This is not quite sufficient, since the Resistance cannot
just play the full tree immediately, or else the Spies would
no longer have to play a mixed strategy and could instead
just choose their one best response (this is akin to going
first in rock-paper-scissors). In the Appendix, we show how
to choose SQ from a mixed strategy of trees. For now, it
suffices to say that we can achieve the value of this game in
practice.

IV. Mechanism Dominance

While our mechanism does correctly implement the
Nash equilibrium, it is only meaningful if players are mo-
tivated to play the mechanism. Unlike true mechanism
design, in which a designer imposes costs on different
outcomes, our mechanism is unsupervised and must be
individually desirable by each player.

First, we will demonstrate that, if the Resistance players
obey the mechanism, the Spies have no incentive to deviate -
in other words, following the plan strictly dominates deviat-
ing from the plan. To prove this, we use the game property
that missions pass if and only if they have majority support.
Even if all Spies simultaneously deviate, they do not im-
pact which missions pass. If a Spy proposes a mission that
does not correspond to the mixed strategy, all Resistance
players will vote to reject it, so it will not pass. Therefore,
since Spies can make no difference in the actual missions
proposed, the only result of deviating from the mechanism
is differentiate themselves from the Resistance players who
obey the mechanism (and if the spies reveal their identi-
ties in this manner, they will surely lose the game; at that
point the resistance players could avoid putting them on
missions).

However, this relies on Resistance players obeying the
mechanism also. In order for Resistance players to obey
the mechanism, they must believe that their probability of
success while playing with the mechanism is higher than
their probability of success without the mechanism. This is
not trivial and does not derive directly from the definition
of the mechanism. If there existed some non-distributed
strategy, where each player formed their own opinions and
proposed missions independently, with a higher chance
of Resistance success than the mechanism, the Resistance
players would have no incentive to follow the mechanism.
This proof of dominance is the main theoretical result of the
paper.

Before we jump into the proof, we give a brief sum-
mary. The proof considers the value of the game when all
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Spies publicly behave as Resistance. We demonstrate that,
in this case, the only relevant parts of the game are the
missions which pass and the results of those missions. We
then demonstrate that proposing missions according to our
mechanism maximizes the likelihood of winning. Since the
Spies could choose to behave as Resistance, the game must
be at least as good for the Spies as the mechanism value;
therefore, the Resistance maximize their chance of winning
by playing the mechanism.

1. Playing a Subset of Spy Strategies

The rest of the proof will revolve around Spies playing a
specific subset of their strategies. Specifically, we want the
Spies to have "temporary amnesia" such that they believe
they are Resistance when they propose or vote (the only
two public, non-anonymous actions). This is feasible since
it involves playing some subset of possible Spy strategies.

We define the value of the game V(GS ,R ) (with S , R strat-
egy sets for Spies and Resistance) as the equilibrium with
the highest Resistance win rate.

Lemma 1: The value of the full game is at most the value
of the game when Spies publicly imitate Resistance.
Proof: When the Spies imitate Resistance, they play
some strategy subset S ′ ⊆ S . We wish to demonstrate
that V(GS ,R ) ≤ V(GS ′ ,R ). Assume for contradiction that
V(GS ,R ) > V(GS ′ ,R ). In the game with S ′, the Spies
play some mixed strategy MS ′ over S ′ which gives them
V(GS ′ ,R ). Since S ⊇ S ′, the Spies can also play MS ′ in the
full game, and the Resistance’s best response has value
V(GS ′ ,R ). This is a better value for the Spies, so they can
profitably deviate, which is a contradiction.

2. Information and Imitation

Intuitively, our goal is to show that Spies have strictly
less power when we play the mechanism. To formalize this,
we consider the game where Spies publicly act as Resistance.
We can represent the state of a game as some prefix of

{P11V11P12V12 · · · P15R1, P21V21P22V22 · · · }

where Pij represents the jth mission proposed on round i,
Vij represents the votes of every player on the jth mission
proposed on round i, and Ri represents the result of the
passed mission on round i. This information set assumes
that every round goes through the full 5 proposals, which is
certainly not necessarily true - however, it is trivial to insert
“null” missions for the remaining proposals which represent

no proposal due to a passed mission. For future proofs, we
will refer to the mission which actually went through (either
passed by votes or was last proposed) as Mi. We extend our
previous definition of game value to describe states instead
of strategies - that is V({P11V11 · · · }) is the maximum equi-
librium Resistance win rate when {P11V11 · · · } has been
observed.

Because the Spies play exactly the same as Resistance,
we have the following useful lemma:

Lemma 2: The value of any state S depends only on the
passing missions Mi and the results Vi
Proof: We will proceed with another proof by contradic-
tion. Assume there are two states S and S′, where both S
and S′ have the same values for all Mi, Vi but have some
other difference. Furthermore, without loss of generality,
let V(S) > V(S′).

In order to have a different value, either the distribu-
tion of Spy locations must be different or the distribution
of missions must be different. This is true because the
value of a game is directly determined by mission pro-
posals and whether or not the Spies fail them, and since
the Spies are playing some fixed equilibrium strategy,
whether or not Spies fail them is just a function of Spy
locations. However, we prove that the distribution of
Spy locations trivially cannot be different in S and S′.
Since the votes and proposals are (by construction of the
Spy strategy) independent of Spy location, changing a
vote or proposal cannot change the distribution of Spy
location.

Continuing with our proof by contradiction, this
means that the missions accepted after S must be differ-
ent than after S′. Without loss of generality, we say there
exists some earliest round i such that the mixed strategy
for state S of mission Mi, M S

Mi
, must be different than

its counterpart in S′, M S′
Mi

. Since V(S) > V(S′), consider
the impact of playing M S

Mi
for mission Mi in S′. This is a

valid mission proposal, and so for S to have higher value
than S′, this mission proposal must be less effective in S′.
However, as described in the previous paragraph, this
is only possible if the distribution of Spies is different,
which is impossible.

Note that this lemma only holds when Spies play to imitate
the Resistance (since otherwise the votes could potentially
give information about the distribution of Spy locations).
As a sanity check, the argument clearly does not hold to
remove the mission proposals or results from the set of
important information, since both of those give information
about the location of spies.
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3. Mission-Result Simplification

Now we consider a simplified view of the game in which
only the missions and the results of the missions matter. We
wish to prove that the series of missions proposed by the
mechanism maximizes the value of the game. This is basi-
cally the definition of the mechanism, but we love lemmas,
so we will give a proof anyways.

Lemma 3: If only missions and mission results matter,
playing according to the distribution of the mechanism
maximizes Resistance win chance.
Proof: This derives from a trivial proof by contradiction.
Consider if there is some distribution at some state M ′SMi
which leads to a higher value of the game. In that case,
the mechanism would not be a Nash equilibrium to the
reduced 2-person game, since the Resistance could prof-
itably use that strategy. That is a contradiction to the
definition of the mechanism, so the mechanism strategy
must be optimal.

4. Final Combination

Finally, we will combine our abundance of lemmas to prove
our main result.

Theorem: Playing the mechanism maximizes the value
of the game.
Proof: We will prove that, when the Spies play to imitate
the Resistance, the game has value equal to the mech-
anism value. By Lemma 1, that means that the whole
game has value at most the mechanism value, meaning
the Resistance should play the mechanism to maximize
value.

When the Spies imitate the Resistance, by Lemma 2,
the only parts of that state that matter for the value of
the game are missions and results. By playing according
to the mechanism, the Resistance maximize their win
rate by Lemma 3.

This theorem does not rule out the possibility that other,
non-mechanism strategies also achieve the mechanism
value. All it says is that playing the mechanism will maxi-
mize win rate for the Resistance. However, if the Resistance
are rational, all will agree that playing a strategy which is
known to lead to maximal win rate is beneficial. Therefore,
the mechanism is self-enforcing and a full description of the
optimal value of the game.

V. Solving The Mechanism

1. Normal-Form Game

The obvious first approach to solving the game is to
represent it as a normal-form game, with columns as Spy
strategies and rows as Resistance strategies. Since our game
is zero-sum, we can solve it using linear programming.
However, as we’ve described previously, the number of
strategies is exponential in the size of the information set.
Naïvely, there are 1031 Resistance strategies and around
10150 Spy strategies. However, this number overcounts the
unique strategies substantially, since there are many strate-
gies which are symmetric.

Symmetries: The first (and easiest) symmetry to see is
in the first mission. Since Spies are allocated randomly, it
does not matter what the first mission is. We arbitrarily
choose two positions to be the two players we send on the
first mission. This helps us cut down on the number of infor-
mation sets by an order of magnitude, which will be useful
for CFR later. We can also use symmetries in other places
throughout the game also. For instance, when the Spies
decide whether or not to fail the first mission, their decision
depends only on the number of Spies on the mission, not on
their specific locations. This allows us to cut a substantial
number of strategies; however, in the later rounds, often
each player has been on a unique combination of missions,
so symmetries cannot be used. Therefore, we need another
method to cut down on the number of games.

Choiceless nodes: Throughout the tree, there are some
nodes where one strategy strictly dominates another. For
instance, if the Spies have already observed two fails and
have the option to fail a mission, they always should. Fail-
ing the mission would lead to an instant victory, whereas
passing the mission has some chance of leading to failure in
the future. Similarly, the Resistance should never propose
a mission which includes the entirety of a previous failing
mission, since that mission is guaranteed to still have a
Spy on it. Most importantly, on the last mission, the Spies
always fail given a choice. This allows us to remove the
majority of Spy decision nodes.

Early termination: The above numbers for Resistance
and Spy strategies include numbers all the way down to the
5th round regardless of history. However, in the Resistance
tree, the subtree rooted at the node after three passing or
three failing missions is irrelevant, since at the point the
game has already ended. Therefore, we can prune a sub-
stantial amount of the tree by ignoring any nodes after a
decided point.
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This allows us to cut the size of both strategy sets sub-
stantially, especially the Spies. However, even after sym-
metries, we find 1010 Resistance strategies and 103 Spy
strategies, a very substantial reduction but still many orders
of magnitude above what an LP solver can handle. There-
fore, we can only solve simplified versions of The Resistance
as a normal-form game. We strongly solve the three-round
variant with LP, which we discuss in Results. However, we
will have to use a different approach if we want to have a
chance of solving the five-round game.

2. Counterfactual Regrets

The method of minimizing counterfactual regret (com-
monly called just CFR) is an algorithm for finding an
ε−approximate Nash equilibrium in imperfect informa-
tion games. CFR attempts to minimize regret, since if both
players play strategies with regret less than ε, the strategies
are a 2ε−Nash equilibrium[4]. Instead of attempting to
directly minimize regret, CFR minimizes a related quantity,
counterfactual regret. The sum of counterfactual regret over
time is an upper bound for regret, and minimizing it also
minimizes regret and eventually leads to the approximate
equilibrium. We will not completely re-describe the details
of the method, which has been widely analyzed and used
for solving poker games.

Unlike expanding to normal form, which was exponen-
tial in the number of information sets, CFR is polynomial in
the number of information sets. Furthermore, our mecha-
nism has very few information sets. After taking advantage
of the above simplifications, the number of information sets
is around 106, most of which are terminal (which do not
require keeping state). With advanced hardware and opti-
mized software, CFR can handle problems with 1010 hidden
states. Therefore, our problem is a great candidate for CFR.

Since there are no publicly available implementations of
CFR which are not poker-oriented, we implemented CFR
ourselves. Our implementation is not The Resistance-specific
– by changing certain functions to represent any imperfect-
information game, our CFR will compute a solution to any
game, within computational limits.

The two major problems with CFR are memory use and
precision. Thankfully, since our problem is small, memory
use was not a huge concern. By implementing the optimiza-
tions described by Neller and Lanctot[5] to avoid storing
the complete history of strategies, our CFR uses the same

amount of memory regardless of the number of iterations.
Even in our small problem, using default Python floats very
quickly lead to severely inaccurate results, due to accumu-
lated numerical rounding errors. Instead, we used Python’s
Decimal class, which allows arbitrary-precision decimal
computation. This comes in a substantial tradeoff in speed,
but, thanks to our small problem size, the iterations are
reasonably fast.

Our implementation of CFR, along with the accompany-
ing The Resistance-specific functions and documentation for
how to use it for other, non-The Resistance problems, can be
found at https://github.com/mikeambrose/ResCFR.

VI. Results

1. LP Results

In the three-round simplified version of the game, the
number of strategies is far smaller. In analyzing the game,
we were able to reduce the number of spy strategies to four,
all relating to behavior on the first mission: whether to
pass/fail the mission if there are one/two spies on it. Thus
the strategies are [(1P, 2P), (1P, 2f), (1f, 2P), (1f, 2f)]. Other
than the first mission, the spies must always fail the mission
if possible, either to prevent a loss or achieve a win.

The number of Resistance strategies can be reduced to
150. On the second mission, if the first mission passes, they
have 3 distinct options for the second mission, and only 2
if the first mission fails. And then on the third and final
mission, they have between 3 and 7 relevant strategies, de-
pending on the histories of the missions at that point in the
game.

Given these Resistance and Spy strategies, we computed
the payoff matrix of the game by computing the probabil-
ity each Resistance strategy would win against each Spy
strategy. This is completely determined by the locations
of the spies at the beginning of the game; thus, each value
in the matrix is some x/10 where x is the number of spy
configurations in which the spies win the game with this
pair of strategies.

Then, we used an LP solver to find the optimal value of
this zero-sum game, which was 6/10. This was achievable
with a pure strategy, where the Resistance always selected
missions in a certain way, and the spies always fail the first
mission5. Though it was interesting that this three-round
variant of the game had a pure Nash equilibrium; as we

5Specifically, AB play round 1. ACD play round 2. If round 1 passed and round 2 failed, AB play round 3. Else, if round 1 failed and round 2 passed,
AC play round 3. Also, spies could choose to always pass the first mission, rather than always failing it, and this is equally effective.

6
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discovered, this does not extend to the full five-round game.
Though we were encouraged by the magnitude of the

reduction we were able to achieve, and the solution we were
able to find to the three-round game, this method did not
extend to the full game. As described above, even after
exploiting the available symmetries, the size of the payoff
matrix was many orders of magnitude greater than any
existing LP solver can handle.

2. CFR Results

The CFR algorithm was run for 5 hours on a machine
with 8GiB of memory and a 3.6GHz processor, completing
4000 iterations at approximately 5 seconds per iteration.
The output was two strategies which we will denote S and
R (for the Spy and Resistance strategy, respectively). In
order to demonstrate that the algorithm had converged, we
also calculated the Spies’ best response to R , S∗R.

Table 1: Spy win rate against R

Strategy S∗R S

Win rate 0.70002 0.69914

These numbers are already very close together, with
spies gaining an advantage of less than 1% by exploiting the
Resistance strategy. With more computing power and time,
this gap could be closed further. Furthermore, we looked at
win rate by starting position (the only hidden information
and the only random information).

Table 2: Spy win rate by starting configuration

Spies on initial mission S∗R winrate S winrate

2 0.99579 0.99484
1 0.79417 0.79345
0 0.4131 0.4119

Even in each subcategory, the deviation is very small.
This gives us more confidence that our solution is almost
converged. Again, given more computing power and time,
we could certainly lower this gap; however, we can also be
confident that the computed equilibrium is very close to a
Nash equilibrium.

3. Viewing the Results

For the practical use of these results, we’ve published an
interactive version of the tree, which is available at https:
//www.ocf.io/ambrose/cs270/spies.html and https://
www.ocf.io/ambrose/cs270/res.html for the Spy and Re-
sistance perspectives, respectively. These displays of the
trees are simple ways for each team to follow along with
the flow of the game and find the optimal mission proposal
probabilities at each step. Symmetries are expanded for clar-
ity, although early termination still occurs. Missions/spy
positions “A” through “J” are referenced - these refer to the
(5

2) = 10 possible missions, see Appendix Section 2 for an
explanation. Click on a node to expand it.

VII. Discussion

The first and most obvious result is that if all players
play optimally, the spies win 70% of the time. In other
words, the game is biased towards the spies, which we had
suspected but previously had no way of substantiating.

By examining the strategies, we see that the 5-round
game is inherently more complex than the three-round
variant and does have some interesting dynamics. Many
decisions of which mission to propose or whether to pass
or fail are neither pure nor uniform. For instance, using
the tree at https://www.ocf.io/ambrose/cs270/res.html
and looking at the mission proposal distribution after a
single fail, we see that, while Resistance strongly avoid
proposing missions H, I, and J (which contain both mem-
bers of the first mission, so are guaranteed to fail), the rest
are mixed. Furthermore, there is some aversion to picking
the complement to the first mission (“A”), even though the
first mission failed, since a fail in that mission leaves the
Resistance with extremely little information gained. Similar
interesting mixed strategies can be found at a variety of
places in the tree.

The Spy strategy tends to be a bit more binary. Spies
tend to pass on the two-person rounds and fail on all others.
Nonetheless, the final Spy win rate is extremely close to
0.7, which speaks to some fundamental symmetry within
the game. It seems likely that the final win rates would
converge to (1, 0.8, 0.4) for two, one, or zero Spies on the
first mission. While it is more difficult to see why this is
true than in the three-round game, most likely this can be
arrived at via some probabilistic argument based purely on
initial position.

Another interesting result for those who play Resistance
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is the spy strategy of almost always passing on round 1.
We were confused to see this at first, since failing on round
1 means only two more fails are necessary for the spies
to win the game, putting them in a superficial position of
advantage. However, the first round is only a two-person
round, which means that failing reveals a lot of information
about who the spies are. Spies are more likely to fail on
a three-person round, which leaves a lot of mystery about
their location.

Overall, the strategies here likely have limited impact on
the typical game of The Resistance, where players generally
rely on other players’ mistakes to win. However, some fea-
tures of commonly-played strategies, like generally passing
the first mission as a Spy, might be applicable to any player
of the game.

Our implementation of CFR proved capable of solving
this game with reasonable accuracy in a short amount of
time. In general, this approach of simplifying/reducing a
game and then applying CFR on the simplified game might
be useful in a variety of games. For instance, we can use
this mechanism design in many games in which collusion
is a valid strategy. In that respect, we could solve smaller,
two-person games (colluded vs. unaffiliated) to demon-
strate the effect of collusion. However, this only yields a
significant speedup if this also decreases the number of rele-
vant information sets, as our mechanism did by eliminating
voting/proposed missions.

Future work could look more deeply at the found strat-
egy to discover the source of the symmetries, as well as
study generalized variants of The Resistance with more
rounds or more players. Another variant involves 7 players
with 3 spies, which would increase the size of the game
by around 3 orders of magnitude - doable, but far more
demanding than the current implementation. Also, The
Resistance can be generalized to any number of rounds. It
seems logical to expect that Resistance win rate should in-
crease as the number of rounds increases, assuming mission
size remains the same, since the Resistance gains more and
more information about the location of the Spies.

Resistance is Futile
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VIII. Appendix

1. Selecting SQ From Mixed Strategy

Given a mixed strategy of Resistance trees St, we need
some way to extract our mixed strategy for each round SQ.
Simply picking a tree is not sufficient because then the Spies
will know exactly what the Resistance will do in the future
and can tailor their response to that. Therefore, each SQ
must not leak any information about the future strategy.

First, we will establish some notation. Let t would be a
Resistance pure strategy and let t(r1r2r3 · · · rk) = Mk+1 be
the mission proposal of t after the sequence of pass/fails
r1, r2, r3, · · · , rk. For instance, t(p) be the choice of that strat-
egy after one pass. Similarly, t(pp) would be the choice
of that strategy after two passes. For the pure strategy in
Figure 2, t(p) = A, t(pp) = A, and t(p f ) = B. We also
must formalize what we mean by public state Q. In this
mechanism, the only relevant public information is the mis-
sion chosen and the result of that mission. This eliminates
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the voting information and the other proposed missions;
however, in this mechanism, no missions are rejected and
all missions are accepted unanimously, so this informa-
tion is useless. Therefore, our state can be represented as
M1r1/M2r2/ · · · where Mi is the mission proposed on turn
i and ri is the result (either p or f ) on round i. Extending
this notation, let QM1 be the first mission proposed and Qr1

be the first mission proposed.
We define SQ(Mi) as the probability that mission Mi is

chosen and P(t) as the probability that a given t is chosen
in the original mixed Nash equilibrium St

SQ(Mi) = ∑
t∈T∗(Q+Mi))=Mi

P(t)
/

∑
t∈T∗(Q)

P(t) (1)

where T∗ is defined as the set of all trees in which Q is a
reachable state:

T∗(Q) = {t ∈St|t() = QM1

∩ t(Qr1) = QM2

∩ t(Qr1 Qr2) = QM3

∩ · · · }

(2)

and Q + Mi is Q expanded with the decision of Mi on the
next round (note that this is still valid and does not need ri
since the last spy decision is not needed for the Resistance
strategy up to round i).

From that set, we pick the distribution of current strate-
gies proportionally to their probabilities in the original
mixed equilibrium.

This strategy does not give away any information about
future strategies, since it is computed before any future
strategies are chosen and is independent of future choice.
Therefore, all that remains is to show that the probability of
playing a tree is equivalent to its original probability in the
equilibrium St.

Theorem: For each round k and for any mission results
R ∈ {p, f } × k, the probability of playing strategies drawn
from SQ up to round k that result in state Q∗ is equal to the
probability of picking a tree whose top k levels leads to the
state Q∗

Proof: First, we will get an equation for the probability of
picking a tree whose top k levels leads to Q∗. For arbitrary k,
that probability is the probability of picking a tree in T∗(Q∗)

∑
t∈T∗(Q∗)

P(t) (3)

since T∗(Q∗) is, by construction, the set of all trees where
Q∗ is possible.

To give an intuition as to why this is true, we look at
k = 1. The set of working information before picking a
mission is empty (since no missions have been proposed
yet). Therefore, our Q = {} and, for each mission Mi,

S{}(Mi) = ∑
t∈T∗(Mi)

P(t) (4)

(there is no proportional constant since ∑t∈St P(t) = 1)
Therefore, at the end of round 1, for any Q∗ = {M1 =

M′, r1 = R1} we must show that the probability of arriving
at Q∗ through SQ is equivalent to the probability of picking
a tree that starts with M′. In other words,

S{}(M′) = ∑
t∈T∗(Mi)

P(t) = ∑
t∈T∗(Q∗)

P(t) (5)

which is directly true from the definition of T∗(Q).
Now we prove the full case. We write our probability

that Q∗ is drawn from SQs as

k−1

∏
i=0

SQi (QMi+1) (6)

where Qi is the set of strategies up to round i. Expanding
each SQi gives us

∑
t∈T∗(Q1)

P(t)×
∑t∈T∗(Q2)

P(t)

∑t∈T∗(Q1)
P(t)

× · · ·

×
∑t∈T∗(Qk)

P(t)

∑t∈T∗(Qk−1)
P(t)

(7)

Alternate terms cancel, giving us

∑
t∈T∗(Qk)

P(t) (8)

where Qk is the same as our final state, Q∗. This is exactly
the same as our alternate definition, so the lemma holds
and our method of generating SQ is equivalent to the Nash
equilibrium St.

2. Enumeration of Position Sets

In the visualizer (mentioned in section VI.3), missions and
spy positions are referred to by letters A through J. These
refer to sets of positions as follows (with players numbered
1 through 5 around the table from an arbitrary start index
of 1):

9
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For spy positions and 2-person missions:

Table 3: Mission Distribution

Name Players On Mission

A 1, 2
B 1, 3
C 1, 4
D 1, 5
E 2, 3
F 2, 4
G 2, 5
H 3, 4
I 3, 5
J 4, 5

For the 3-person missions, take the complements of
above.

10
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